Русский математик, создатель неевклидовой геометрии, деятель университетского образования и народного просвещения.
Н.И. Лобачевский родился в Нижнем Новгороде. Его родителями были Иван Максимович Лобачевский и Прасковья Александровна Лобачевская. Николай был средним из их троих сыновей.
Разработанная Лобачевским новая геометрия не включает в себя евклидову геометрию, однако евклидова геометрия может быть из неё получена предельным переходом (при стремлении кривизны пространства к нулю). Лобачевский детально разработал тригонометрию неевклидова пространства, дифференциальную геометрию (включая вычисление длин, площадей и объёмов) и смежные аналитические вопросы. Лобачевский получил ряд ценных результатов и в других разделах математики: так, в алгебре он разработал, независимо от Ж. Денделена, метод приближённого решения уравнений, в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции, дал признак сходимости рядов и др.
Известный английский математик Уильям Клиффорд назвал Лобачевского «Коперником геометрии». Лобачевский в течение 40 лет преподавал в Казанском университете, в том числе 19 лет руководил им в должности ректора. Его активность и умелое руководство вывели университет в число передовых российских учебных заведений.
В разные годы он опубликовал несколько содержательных статей по алгебре, теории вероятностей, механике, физике, астрономии и проблемам образования.
7 февраля 1826 года Лобачевский представил для напечатания в «Записках физико-математического отделения» сочинение: «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных» (на французском языке). Но издание не осуществилось. Рукопись и отзывы не сохранились, однако само сочинение было включено Лобачевским в его труд «О началах геометрии» (1829—1830), напечатанный в журнале «Казанский вестник». Это сочинение стало первой в мировой литературе серьёзной публикацией по неевклидовой геометрии, или геометрии Лобачевского. Уже в первой публикации Лобачевский детально разработал тригонометрию неевклидова пространства, дифференциальную геометрию (включая вычисление длин, площадей и объёмов) и смежные аналитические вопросы.